1. The real numbers

Definition 1.1: Let $S \neq \phi$ be any set. Then a function $*: S \times S \rightarrow S$ is called a binary operation on S. We will write the element

$$*(a_1, a_2), \forall (a_1, a_2) \in S \times S$$

by follows $a_1 * a_2$ where:

(i)* is commutative on *S*, if a * b = b * a, $\forall a, b \in S$.

(ii) * is associative on S, if (a * b) * c = a * (b * c), $\forall a, b, c \in S$.

Example 1.1: Let R be the set of real numbers, and * defined on R as Or Raher follows:

$$a * b = a^3 + b^3, \forall a, b \in R.$$

Then, * is commutative, but not associative (why?)

Definition 1.2: A field is a nonempty set F with two operators "+" addition and "..." multiplication which satisfy the following "field axioms" (*A*), (*B*) and (*C*).

(A) Axioms for addition:

$$\begin{array}{l} (A_1) \ \forall x, y \in F \Rightarrow x + y \in F, \\ (A_2) \ x + y = y + x, \forall x, y \in F, \\ (A_3) \ (x + y) + z = x + (y + z), \forall x, y, z \in F, \\ (A_4) \ \exists ! \ 0 \in F \ s. \ t, \ 0 + x = x + 0 = x, \forall x \in F, \\ (A_5) \ \forall x \in F \ \exists ! \ (-x) \in F, s. \ t, \ x + (-x) = (-x) + x = 0. \end{array}$$

(*B*) Axioms for multiplication:

$$(B_1) \ \forall x, y \in F \Rightarrow x. y \in F,$$

$$(B_{2}) x. y = y. x, \forall x, y \in F,$$

$$(B_{3}) (x. y). z = x. (y. z), \forall x, y, z \in F,$$

$$(B_{4}) \exists ! 1 \in F \text{ s. } t \ 1. x = x. \ 1 = x, \forall x \in F,$$

$$(B_{5}) \forall x \in F \text{ and } x \neq 0, \exists ! (1/x) \in F \text{ s. } t \ x. (1/x) = (1/x). \ x = 1.$$

(*C*) The distributive law:

$$x.(y+z) = x.y + x.z, \forall x, y, z \in F.$$

Example 1.2: (R, +, .) is a field (*R* real numbers)

AmadMansor (Q, +, .) is a field (Q rational numbers) . 610r R'S

 \mathbb{Q}_1 : Give example of not filed.

Order sets:

Definition 1.3: Let S be any set and \leq , \subset, S^2 be any relation defined on S. Then \leq is partial order relation or order relation. If the following properties hold:

1. $\forall a \in S, a \leq a$ (reflexive).

2. $\forall a, b \in S$, if $a \leq b$ and $b \leq a \Rightarrow a = b$ (antisymmetric).

3. $\forall a, b, c \in S$, if $a \leq b$ and $b \leq c \Rightarrow a \leq c$ (transitive).

Definition 1.4: Let $\varphi \neq S$ be any set and let \leq be a relation on *S*, then we say that a pair (S, \leq) is an ordered set (or partial ordered set) if \leq is a partial order relation on S.

Example 1.3: Let $(Z, \leq), (P(A), \subseteq)$ are ordered sets. Where P(A) = ${B: B \subset A}.$

y Marsor

Definition 1.5: Let (S, \leq) be an ordered set and $\forall a, b \in S$ either $a \leq b$ or $b \leq a$, then we say that the ordered pair (S, \leq) is totally ordered set or (*a* and *b* are comparable).

Example 1.4:

- 1. (Z, \leq) is totally ordered set
- 2. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $B = \{2, 4, 8\}$

Let α be a relation on *A*, *B* defined as follows:

 $\alpha = \{(a, b) \in A \times A\}$

Then (A, α) is not totally ordered set, because not every two elements in *A* are comparable. (*B*, *A*/*B*) is totally ordered set.

Definition 1.5: we say that (S, \leq) is well-ordered set if $\forall \varphi \neq A \subset S, A$ has a smallest element in *A*. (i.e.), $\exists a \in A$ s.t $a \leq x, \forall x \in A$.

Example 1.5: (N, \leq) is a well- ordered set.

• Give example of not well-ordered set?

Bounded sets:

Definition 1.7: Let (S, \leq) be an ordered set and $E \subset S$.

- 1. If $\exists a \in S$ s.t $x \leq a, \forall x \in E$, we say that *E* is bounded above and call *a* an upper bound of *E*.
- 2. An upper bound a of *E* is called the least upper bound of *E* (l.u.b (*E*)) or supremum of *E* (sup(E)) if $a \le y, \forall y$ upper bound of *E*.
- If ∃ b ∈ S s.t x ≥ b, ∀x ∈ E, we say that E is bounded below and call b a lower bound of E.
- 4. A lower bound *b* of *E* is called the greatest lower bound of *E* (g.L.b(E)) or infimum of *E* $(\inf(E))$ if $b \ge y, \forall y$ lower bound of *E*.
- 5. E is called bounded if E is bounded above and bounded below.

Example 1.6:

- 1. Let S = R and $E = (-\infty, 0)$, then E is bounded above, since $\exists 0 \in R$ s.t $x \le 0, \forall x \in E$
- \therefore L. u. b(E) = sup (E) = 0 \notin E
- 2. Let S = Q and $E = \{..., -3, -2, -1\}$. Then *E* is bounded above, since $\exists -1 (\text{ or } 0, 1, 4, ...) \in Q \text{ s. t } x \leq -1 (\text{ or } 0, 1, 4, ...) \forall x \in E.$ \therefore L. u. b(E) = sup (E) = $-1 \in E$
- 3. Let S = R and $E = [-2, \infty)$, then E is bounded below, since $\exists -2$ (or -1, -3, ...) $\in S$ s.t $x \ge -2, \forall x \in E \Rightarrow g$. L. b(E) = inf (E) = $-2 \in E$
- 4. Let S = Q and $E = \{1, 2, 3, 4, ...\}$. Is E bounded below? (Example).
- 5. Let S = R and E = (-1,5). Then E is bounded above and sup(E) = 5 ∉ E. Also E is bounded below and inf(E) = -1 ∉ E. Thus E is bounded.
- 6. Let S = Q and E₁ = {x ∈ Q⁺ |x² < 2} and E₂ = {x ∈ Q⁺ |x² > 2} ⇒
 E₁ is bounded above. Since √2 ∉ Q ⇒ E₁ has no least upper bound (sup) in Q. Also, E₂ is bounded below, since √2 ∉ Q ⇒ E₂ has no greatest lower bound (inf) in Q.
- 7. Let S = Q and $E = \left\{\frac{1}{n} | n = 1, 2, 3, ... \right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, ... \right\}$. Then *E* is bounded. sup(E) = $1 \in E$ and inf (E) = $0 \notin E$.

The completeness axiom

Every bounded above set has the least upper bound.

Equivalently:

Every bounded below set has the greatest lower bound.

Definition 1.8: An ordered set S is said to have the least upper bound property (or is said to be complete) if every non-empty bounded above subset *E* of S has a supremum in *S*.

Example 1.7:

- 1. The real numbers R is a complete order field.
- , then E the the second 2. Let Q be an ordered set and $E = \{x \in Q^+ | x^2 < 2\}$, then $E \neq \{x \in Q^+ | x^2 < 2\}$, then $E \neq \{x \in Q^+ | x^2 < 2\}$.