The relation between the field of real numbers and

The field of rational numbers

Proposition 1.1: Every ordered field contains a subfield like the field of rational numbers.

Proof: Let $(F,+,$.$) be any ordered field.$
$\therefore 0,1 \in F$ (0 is additive identity and 1 is multiplicative identity), then we see that

$$
\underbrace{1+1+1+\cdots+1}_{(\mathrm{n} \text {-times })}=n .1\left(n \in Z^{+}\right) \Rightarrow n .1 \neq 0(\text { why? })
$$

Thus, if $n .1=0, \forall n \in Z^{+}$. So, If it is not, i.e., let $n .1=0$ for some $n \in Z^{+}$, and let K be the least positive integer such that
$\underbrace{1+1+1+\cdots+1}_{\text {(K-times) }}=k .1=0$
Clearly that $k>1$ (since $1>0$) and $(k-1) .1>0$ (why?)
$\Rightarrow 0<(k-1) .1<k .1=0 \Rightarrow 0<0 \Rightarrow C!$,
thus $n .1=0 \Leftrightarrow n=0\left(n \in Z^{+}\right)$.
From the above remarks we see that F contains elements of kind

$$
n .1=n,\left(n \in Z^{+}\right),
$$

and

$$
n .1=0 \Leftrightarrow n=0,
$$

also $n .1=m .1 \Leftrightarrow n=m$.
$\because F$ is a field $\Rightarrow \mathrm{F}$ contains $-n .1$ where

$$
\underbrace{(-1)+(-1)+(-1)+\cdots+(-1)}_{(-1)(n-t i m e s)}=-n .1
$$

Thus, F contains a copy of Z.
$\because F$ is a field $\Rightarrow \forall 0 \neq n \in Z \Rightarrow \frac{1}{n} \in F$,
therefore F contains a copy of Q.
Proposition 1.2: The equation $x^{2}=2$ has no solution in Q.
Proof: Assume that $x^{2}=2$ has a solution in Q, say y
$\therefore y \in Q \Rightarrow y=\frac{a}{b}, b \neq 0(a, b \in Z)$ and $y^{2}=2 \Rightarrow a^{2}=2 b^{2}, a^{2}>0$
Suppose that a, b is positive number and the greatest common factor between them is 1 . Then we have the following cases:

1. a and b are odd $\Rightarrow a^{2}=2 b^{2} \Rightarrow C$!
2. a is odd, b is even. When b is even then $\mathrm{b}=2 c(c \in N)$
$\because a^{2}=2 b^{2} \Rightarrow a^{2}=8 c^{2} \Rightarrow C!$
3. a is even, b is odd, then $a=2 d(d \in N)$
$\because a^{2}=2 b^{2} \Rightarrow 4 d^{2}=2 b^{2} \Rightarrow 2 d^{2}=b^{2} \Rightarrow C!$
From all above we get that $x^{2}=2$ has no solution in the rational number Q

Theorem 1.1: The equation $x^{2}=2$ has a unique positive real root.
Proof: Let $S=\left\{x \in Q \mid x>0\right.$ and $\left.x^{2}<2\right\}$
$\because 1 \in S \Rightarrow S \neq \varphi$, and S is bounded above (since $2,3, \ldots$, is an upper bound of S), then by completeness property of R, S has least upper bound in R.

Let $\sup (S)=y_{0}, y_{0} \in R$. Clearly that $y_{0}>0($ by Def. of $S)$.
Now, claim that $y_{0}^{2}=2$, if not (i.e. $y_{0}^{2} \neq 2$), then $y_{0}^{2}<2$ or $y_{0}^{2}>2$.

1. If $y_{0}^{2}<2$, choose h s.t $0<h<1$
$\therefore\left(y_{0}+h\right)^{2}=y_{0}^{2}+2 y_{0} h+h^{2}=y_{0}^{2}+h\left(2 y_{0}+h\right)<y_{0}^{2}+h\left(2 y_{0}+1\right)$
Also, let h satisfy the following condition

$$
\begin{aligned}
h< & \frac{2-y_{0}^{2}}{2 y_{0}+1} \Rightarrow y_{0}^{2}+h\left(2 y_{0}+1\right)<2 \\
& \Rightarrow\left(y_{0}+h\right)^{2}<y_{0}^{2}+h\left(2 y_{0}+1\right)<2
\end{aligned}
$$

$\because\left(y_{0}+h\right)^{2}<2$, then $\left(y_{0}+h\right) \in S$, when $y_{0}<y_{0}+h \Rightarrow y_{0}$ is not upper bound of $S \Rightarrow C!\left(y_{0}=\sup (\mathrm{S})\right.$).
2. If $y_{0}^{2}>2$, choose k s.t $0<k<1$
$\therefore\left(y_{0}-k\right)^{2}=y_{0}^{2}-2 y_{0} k+k^{2}=y_{0}^{2}-k\left(2 y_{0}-k\right)>y_{0}^{2}-k\left(2 y_{0}+1\right)$
Also, let k satisfy the following condition

$$
\begin{aligned}
k> & \frac{y_{0}^{2}-2}{2 y_{0}+1} \Rightarrow k\left(2 y_{0}+1\right)<y_{0}^{2}-2 \Rightarrow-k\left(2 y_{0}+1\right)>2-y_{0}^{2} \\
& \Rightarrow y_{0}^{2}-k\left(2 y_{0}+1\right)>2 \Rightarrow\left(y_{0}+k\right)^{2}>y_{0}^{2}-k\left(2 y_{0}+1\right)>2
\end{aligned}
$$

$\Rightarrow\left(y_{0}-k\right)^{2}>2$, then $\left(y_{0}-k\right)$ is an upper bound of S, thus $y_{0}>y_{0}-k$ (because y_{0} least upper bound of $\left.S\right) \Rightarrow C!\left(y_{0}-k<y_{0}\right)$.

From (1) and (2) $\Rightarrow y_{0}^{2}=2$.
Here to prove that y_{0} is unique. Let $\exists z \in R$ s.t $z \neq y_{0}$ and $z^{2}=2$ $\because \mathrm{z} \neq y_{0}$, then either $z>y_{0} \Rightarrow 2=z^{2}>y_{0}^{2}=2 \Rightarrow 2>2 \Rightarrow C!$
or

$$
z<y_{0} \Rightarrow 2=z^{2}<y_{0}^{2}=2 \Rightarrow 2<2 \Rightarrow C!
$$

Thus $\mathrm{z}=y_{0}$ and y_{0} is the only one positive real root to $x^{2}=2$

Remark:

1. From above Q is a proper subfield of R (i.e. $Q \subsetneq R$) because $\sqrt{2} \in$ R, but $\sqrt{2} \notin Q$.
2. Q is not complete, because $S=\left\{x \in Q \mid x>0\right.$ and $\left.x^{2}<2\right\} \subset Q, S \neq$ $\varphi(1 \in S)$
S is bounded above and $\sup (S)=\sqrt{2} \notin Q$, then S has no least upper bound in Q, thus Q is not complete field.
\mathbb{Q}_{2} : prove that $x^{2}=3$ has no solution in Q . (Check)
\mathbb{Q}_{3} : prove that $x^{2}=3$ has a unique positive real root. (Check)

Theorem 1.2: For any positive real number a and for any $n \in Z^{+}, \exists$! positive real number satisfies the following $x^{n}=a$ and denoted this unique number by $\sqrt[n]{a}\left(\right.$ or $\left.a^{1 / n}\right)$.

Proof: The proof is similar to proof of (Theorem 1.1).
\mathbb{Q}_{4} : Let a, b be tow positive real numbers and $n \in Z^{+}$prove that $(a, b)^{\frac{1}{2}}=a^{\frac{1}{2}} \cdot b^{\frac{1}{2}} \quad$ (Check)

Theorem 1.3: (Archimedes property)

For any real numbers a, b and $a>0$, there is a positive integer number n s.t $n a>b$.

For any real numbers a, b and $a>0$, there is a positive integer number n s.t $n a>b$.

Let any real numbers a, b ann if there is a positive integer number n such that $n a \leq b$, then, $a<0$ and $a>0$, there is a positive integer number n s.t $n a>b$.

Proof: Let $S=\{a k \mid k \in N\} \subset R, S \neq \varphi$ (becauce 1. $a=a \in S$
\therefore by completeness of R, S has least upper bound. Let $y=\sup (S),(y \in$ R)
$\therefore a>0 \Rightarrow y-a<y \Rightarrow y-a$ is not upper bound of S. Hence, \exists element $m a \in S$ (for some $m>0, m \in Z^{+}$) s.t $y-a<m a \Rightarrow m a+$ $a>y \Rightarrow(m+1) a>y$

But, $(m+1) a \in S,(m+1 \in N) \Rightarrow C!$, because y is an upper bound of S. Then $n a>b$

Corollary 1.1: For any positive real number ϵ, there is a positive integer n such that $\frac{1}{n}<\epsilon$. (i. e.) $\forall \epsilon>0, \exists n \in N$ s.t $\frac{1}{n}<\epsilon$.

Proof: Take $b=1$ and $a=\epsilon$, then by (Theorem 1.3), we get that $\frac{1}{n}<\epsilon$.

Density of Rational Numbers

Theorem 1.4: If $a, b \in R$ such that $a<b$, then there exists $r \in Q$ such that $a<r<b$.

Or ((Between any two real numbers there is at least one rational number)).

Proof:

Case 1: Let $0<a<b$, and $b-a>1$.
and
Let $S=\{n \in N \mid n=n .1>a\}$
$\therefore S \neq \varphi$ (by Archimedes property) (How?)

Let k be the smallest positive integer in $S[\because \varphi \neq S \subset N$ and N is wellordered set, then by (Def. 1.6) S has a smallest element]

$$
\left.\Rightarrow \begin{array}{l}
k-1 \leq a<k \\
b-a>1
\end{array}\right\} \Rightarrow a<k<b \text { (How?) }
$$

In this case k is the rational number between a and b (k is an integer number).

Now, if

$$
0<a<b, \text { and } 0<b-a<1 .
$$

when $(b-a)>0$, then by (Archimedes property), $\exists n \in N$ s.t $n(b-$ a) $=n b-n a>1$
\therefore From case (1), $\exists k \in N$ s.t $n a<k<n b \Rightarrow a<\frac{k}{n}<b$ and hence $\frac{k}{n}$ is rational number.

Case 2: $a<0<b$, in this case 0 is the rational number between a, b.
Case 3: $a<b<0 \Rightarrow 0<-b<-a$
By case (1), $\exists k \in Q$ s.t $-b<r<-a \Rightarrow a<-r<b$.
Corollary 1.2: Let $a<b$, prove that there exists infinitely many of rational numbers between a, b.

Proof: (check).

