Density of Irrational Numbers

Proposition 1.3: Let $r \in Q$ and $s \in Q^{C}$, then

1. $r+s \in Q^{C}$
2. If $r \neq 0$, then $r s \in Q^{C}$.

Proof: (1) Let $r+s \notin Q^{C} \Rightarrow r+s \in Q$, since Q is field, $r \in Q \Rightarrow$ $-r \in Q$, then $(r+s)-r=s \in Q \Rightarrow C!$ (because $s \in Q^{C}$).
(2) Let $r s \notin Q^{C} \Rightarrow r s \in Q$, since Q is field, and $r \neq 0 \Rightarrow(r s) \cdot \frac{1}{r}=s \in$ $Q \Rightarrow C!$.

Theorem 1.5: if $a, b \in R$ such that $a<b$, then there exists $s \in Q^{C}$ such that $a<s<b$.
Or ((Between any two real numbers there is at least one irrational number)).
Proof: suppose that this theorem is not true.
$\therefore \forall s \in R$ s.t $a<s<b \Rightarrow s \in Q \Rightarrow a+\sqrt{2}<s+\sqrt{2}<b+\sqrt{2}$,
this is contradiction with density of rational numbers.
$\therefore a<s<b, s \in Q^{C}$.
Corollary 1.3: Let $a<b$, prove that there exists infinitely many of irrational numbers between a, b.

Proof: (check).

The Absolute Value Function

Definition 1.9: The absolute value is a function $||:. R \rightarrow R^{+} \cup\{0\}$ defined by
$|x|=\sqrt{x^{2}}=\left\{\begin{array}{c}x, \text { if } x \geq 0 \\ -x, \text { if } x<0\end{array}\right.$
$|x|$ is called the absolute value of x and $|$.$| is called the absolute value$ function.

* Properties of the absolute value function

Theorem 1.6: The function $|$.$| on R$ satisfying the following properties:

1. $|x| \geq 0, \forall x \in R$,
2. $|x| \geq 0 \Leftrightarrow x=0$,
3. $|x . y|=|x| \cdot|y|, \forall x \in R$,
4. $|x+y| \leq|x|+|y|, \forall x, y \in R$,
5. $|x-y| \geq||x|-|y||, \forall x, y \in R$.

Proof: (check).
We shall use the absolute value function to define the distance between two real numbers as follows:

Definition 1.10: Let $d: R \times R \rightarrow R$ be a function define by
$d(x, y)=|x-y|, \forall x, y \in R . d(x, y)$ is called the distance between x and y.

The function d is satisfies the following conditions:

1. $d(x, y) \geq 0, \forall x, y \in R$.
2. $d(x, y)=0 \Leftrightarrow x=y$
3. $d(x, y)=d(y, x), \forall x, y \in R$
4. $d(x, y) \leq d(x, z)+d(z, y), \forall x, y, z \in R$

Proof: $\forall x, y, z \in R$, we have

1. $\because d(x, y)=|x-y| \geq 0$.
2. $d(x, y)=0 \Leftrightarrow|x-y|=0 \Leftrightarrow x-y=0 \Leftrightarrow x=y$

$$
\Rightarrow d(x, y)=0 \Leftrightarrow x=y
$$

3. $d(x, y)=|x-y|=|-(y-x)|=|-1||y-x|$

$$
=|y-x|=d(y, x)
$$

$$
\text { 4. } \begin{aligned}
d(x, y) & =|x-y|=|x-z+z-y| \leq|x-z|+|z-y| \\
& =d(x, z)+d(z, y) .
\end{aligned}
$$

General Information's

Theorem 1.7: Let $\varphi \neq A \subset R$ and $\sup (A)$ exist, prove that
$\exists x \in A$ s.t $\sup (\mathrm{A})-\epsilon<x \leq \sup (A)$.
Proof: (check).

Corollary 1.4: prove that the natural numbers set N is unbounded set.
Corollary 1.5: Let A and B be a non-empty subset of R and let $a<b, \forall a \in A, \forall b \in B$. Prove that $\sup (A) \leq \inf (B)$.

The Extended Real Numbers System

Definition 1.11: The Extended Real Numbers System consists of real field R and two symbols, $+\infty$ and $-\infty$. We preserve the original order in R, and define $+\infty<x<-\infty, \forall x \in R$.

Let R^{*} denoted the extended real numbers systems, then $+\infty$ is an upper bounded of every subset of R^{*}, and every non-empty subset has a least upper bounded.

Example 1.8: Let $\varphi \neq E \subset R$ which is not bounded above in R, then $\inf (E)=+\infty$ in R^{*}. And, if $\varphi \neq E \subset R$ which is not bounded below in R, then $\inf (E)=-\infty$ in R^{*}.

Remark: R^{*} does not form a field.

Some properties:

a) If $x \in R$, then $x+\infty=+\infty, x-\infty=-\infty, \frac{x}{+\infty}=\frac{x}{-\infty}=0$.
b) If $x>0$, then $x .(+\infty)=+\infty, x .(-\infty)=-\infty$.
c) If $x<0$, then $x .(+\infty)=-\infty, x \cdot(-\infty)=-\infty$.

