Density of Irrational Numbers

Proposition 1.3: Let $r \in Q$ and $s \in Q^C$, then

- 1. $r + s \in Q^C$
- 2. If $r \neq 0$, then $rs \in Q^C$.

Proof: (1) Let $r + s \notin Q^C \Rightarrow r + s \in Q$, since Q is field, $r \in Q \Rightarrow$ $-r \in Q$, then $(r + s) - r = s \in Q \Rightarrow C!$ (because $s \in Q^C$).

(2) Let $rs \notin Q^C \Rightarrow rs \in Q$, since Q is field, and $r \neq 0 \Rightarrow (rs)$. $\frac{1}{r} = s \in Q \Rightarrow C!$.

Theorem 1.5: if $a, b \in R$ such that a < b, then there exists $s \in Q^C$ such that a < s < b.

Or ((Between any two real numbers there is at least one irrational number)).

Proof: suppose that this theorem is not true.

 $\therefore \forall s \in R \text{ s.t } a < s < b \Rightarrow s \in Q \Rightarrow a + \sqrt{2} < s + \sqrt{2} < b + \sqrt{2},$

this is contradiction with density of rational numbers.

 $\therefore a < s < b, s \in Q^C$.

Corollary 1.3: Let a < b, prove that there exists infinitely many of irrational numbers between a, b.

Proof: (check).

The Absolute Value Function

Definition 1.9: The absolute value is a function $|.|: R \to R^+ \cup \{0\}$ defined by

$$|x| = \sqrt{x^2} = \begin{cases} x, \text{ if } x \ge 0\\ -x, \text{ if } x < 0 \end{cases}$$

|x| is called the absolute value of x and |.| is called the absolute value function.

Inso Mansor

Properties of the absolute value function

Theorem 1.6: The function |.| on R satisfying the following properties:

1. $|x| \ge 0, \forall x \in R$,

2.
$$|x| \ge 0 \iff x = 0$$
,

- 3. $|x.y| = |x|.|y|, \forall x \in R$,
- 4. $|x + y| \le |x| + |y|, \forall x, y \in R$,
- 5. $|x y| \ge ||x| |y||, \forall x, y \in R.$

Proof: (check).

We shall use the absolute value function to define the distance between two real numbers as follows:

Definition 1.10: Let $d: R \times R \rightarrow R$ be a function define by

 $d(x, y) = |x - y|, \forall x, y \in R. d(x, y)$ is called the distance between x and y.

The function d is satisfies the following conditions:

1. $d(x, y) \ge 0, \forall x, y \in R$. 2. $d(x, y) = 0 \iff x = y$ 3. $d(x, y) = d(y, x), \forall x, y \in R$ 4. $d(x, y) \le d(x, z) + d(z, y), \forall x, y, z \in R$ **Proof:** $\forall x, y, z \in R$, we have

1.
$$\therefore d(x, y) = |x - y| \ge 0.$$

2. $d(x, y) = 0 \iff |x - y| = 0 \iff x - y = 0 \iff x = y$
 $\Rightarrow d(x, y) = 0 \iff x = y$

3.
$$d(x,y) = |x - y| = |-(y - x)| = |-1||y - x|$$

= $|y - x| = d(y,x)$

4.
$$d(x,y) = |x - y| = |x - z + z - y| \le |x - z| + |z - y|$$

= $d(x,z) + d(z,y)$. ■

General Information's

Theorem 1.7: Let $\varphi \neq A \subset R$ and sup(A) exist, prove that

 $\exists x \in A \text{ s.t sup } (A) - \epsilon < x \le \sup(A)$.

Proof: (check).

Corollary 1.4: prove that the natural numbers set N is unbounded set.

Corollary 1.5: Let *A* and *B* be a non-empty subset of *R* and let $a < b, \forall a \in A, \forall b \in B$. Prove that $\sup(A) \le \inf(B)$.

The Extended Real Numbers System

Definition 1.11: The Extended Real Numbers System consists of real field *R* and two symbols, $+\infty$ and $-\infty$. We preserve the original order in *R*, and define $+\infty < x < -\infty, \forall x \in R$.

Let R^* denoted the extended real numbers systems, then $+\infty$ is an upper bounded of every subset of R^* , and every non-empty subset has a least upper bounded.

Example 1.8: Let $\varphi \neq E \subset R$ which is not bounded above in *R*, then inf $(E) = +\infty$ in R^* . And, if $\varphi \neq E \subset R$ which is not bounded below in *R*, then inf $(E) = -\infty$ in R^* .

Remark: R^* does not form a field.

Some properties:

a) If $x \in R$, then $x + \infty = +\infty$, $x - \infty = -\infty$, $\frac{x}{+\infty} = \frac{x}{-\infty} = 0$. b) If x > 0, then $x \cdot (+\infty) = +\infty$, $x \cdot (-\infty) = -\infty$.

c) If
$$x < 0$$
, then $x \cdot (+\infty) = -\infty$, $x \cdot (-\infty) = -\infty$.

Leture Mesin Mathematical Math