Chapter Five: The Continuity (الاستمرارية)

Definition 5.1: Let (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ be a metric space. A mapping $f: X \rightarrow X$ is called continuous at a point $x_{0} \in X$ if for any $\epsilon>0$, there is $\delta>0$ (δ depends on ϵ and x_{0}) such that for each $x \in X$, if

$$
d\left(x, x_{0}\right)<\delta, \text { then } d^{\prime}\left(f(x), f\left(x_{0}\right)\right)<\epsilon .
$$

Or
The $f: X \rightarrow X^{`}$ is continuous at $x_{0} \in X \Leftrightarrow$ for any ball $B_{\epsilon}\left(f\left(x_{0}\right)\right)$ with center $f\left(x_{0}\right)$ and radius ϵ in X, there is a ball $B_{\delta}\left(x_{0}\right)$ with center x_{0} and radius δ in X such that

$$
f\left(B_{\delta}\left(x_{0}\right)\right) \subseteq B_{\epsilon}\left(f\left(x_{0}\right)\right)
$$

Remark 5.2: A mapping $f: X \rightarrow X^{\wedge}$ is called continuous (or continuous on X) iff f is continuous at each point in X.

Theorem 5.3: A mapping $f:(X, d) \rightarrow\left(X^{\prime}, d^{\prime}\right)$ is continuous iff for each open set U in $X^{\prime}, f^{-1}(U)$ is open set on X^{\prime}.
i.e.

$$
f: X \rightarrow X \text { is continuous } \Leftrightarrow \forall U \subseteq_{\text {open }} X^{\prime},
$$

then,

$$
f^{-1}(U) \subseteq_{\text {open }} X \text { where } f^{-1}(U)=\{x \in X / f(x) \in U\}
$$

Proof: \Rightarrow

Suppose that f is continuous on X and $U \subseteq_{\text {open }} X$
To prove $f^{-1}(U) \subseteq_{\text {open }} X$?
Let $x_{0} \in f^{-1}(U)$

$$
\Rightarrow f\left(x_{0}\right) \in U \underset{\text { open }}{U \text { is }} \Rightarrow \exists \epsilon>0 \text { such that } B_{\epsilon}{ }_{\epsilon}\left(f\left(x_{0}\right)\right) \subset U
$$

Since f is continuous $\Rightarrow \exists$ a ball $B_{\delta}\left(x_{0}\right)$ on X such that

$$
\begin{aligned}
& f\left(B_{\delta}\left(x_{0}\right)\right) \subset B_{\epsilon}^{\prime}\left(f\left(x_{0}\right)\right) \subset U \\
& \Rightarrow f\left(B_{\delta}\left(x_{0}\right)\right) \subset U \Longrightarrow B_{\delta}\left(x_{0}\right) \subset f^{-1}(U) \\
& \Rightarrow f^{-1}(U) \subseteq_{\text {open }} X
\end{aligned}
$$

$$
\Longleftarrow
$$

Suppose that, $\forall U \subseteq_{\text {open }} X^{\prime}$, then,

$$
f^{-1}(U) \subseteq_{\text {open }} X
$$

To prove f is continuous?
Let $x_{0} \in X$ and $B^{`}{ }_{\epsilon}\left(f\left(x_{0}\right)\right)$ be a ball in $X^{`}$
$\Rightarrow B^{`}\left(f\left(x_{0}\right)\right)$ is an open set in $X^{`}$.
$\Rightarrow f^{-1}\left(B_{\epsilon}{ }_{\epsilon}\left(f\left(x_{0}\right)\right)\right)$ is an open set in X and $x_{0} \in f^{-1}\left(B_{\epsilon}{ }_{\epsilon}\left(f\left(x_{0}\right)\right)\right.$.
$\Rightarrow \exists \delta>0$ such that $B_{\delta}\left(x_{0}\right) \subset f^{-1}\left(B_{\epsilon}^{\prime}\left(f\left(x_{0}\right)\right)\right.$.
$\Rightarrow f\left(B_{\delta}\left(x_{0}\right)\right) \subset B^{`}{ }_{\epsilon}\left(f\left(x_{0}\right)\right) . \mathrm{s}$
$\Rightarrow f$ is continuous.

Theorem 5.4: A mapping $f:(X, d) \rightarrow\left(X^{\prime}, d^{\prime}\right)$ is continuous iff for each closed set F in X^{\prime}, then $f^{-1}(F)$ is closed set in X.

Proof: \Rightarrow

Suppose that f is continuous and F is closed set in $X^{`}$

To prove $f^{-1}(F)$ is closed in X ?
$\because F$ is closed in X^{\prime}
$\Rightarrow X^{`}-F$ is open in $X^{`}$
$\Rightarrow f^{-1}\left(X^{`}-F\right)$ is open in X.
But $f^{-1}\left(X^{`}-F\right)=X-f^{-1}(F)$
$\Rightarrow f^{-1}(F)$ is a closed set in X.
\Leftarrow
To prove that f is continuous?
Let U be an open set in $X^{`} \Rightarrow X^{`}-U$ is closed in $X^{`}$

$$
\Rightarrow f^{-1}\left(X^{`}-U\right) \text { is closed in } X \text {. (why?) }
$$

But

$$
\begin{aligned}
& f^{-1}\left(X^{\prime}-U\right)=X-f^{-1}(U), \\
& \Rightarrow f^{-1}(U) \text { is open in } X . \\
& \Rightarrow f \text { is continuous. }
\end{aligned}
$$

5.1. The Convergence and Continuity (الاستمرارية والتقارب)

Theorem 5.6: A mapping $f:(X, d) \rightarrow\left(X^{\prime}, d^{\prime}\right)$ is continuous at $x_{o} \in X$ iff for every sequence $\left\langle x_{n}\right\rangle$ in X converges to x_{0}, then the sequence $\left\langle f\left(x_{n}\right)\right\rangle$ in X^{\prime} converges to $f\left(x_{0}\right)$.

Proof: \Rightarrow
Suppose that f is continuous at x_{o} and $\left\langle x_{n}\right\rangle$ is a sequence in X, such that
$x_{n} \rightarrow x_{0}$, to prove that $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ in $X^{`}$.
Let U be an open set to X such that $f\left(x_{0}\right) \in U$.
$\Rightarrow f^{-1}(U)$ is open in X, and $x_{0} \in f^{-1}(U)$.
Since $x_{n} \rightarrow x_{0}$
$\Rightarrow f^{-1}(U)$ contains all but a finite number of the term of $\left\langle x_{n}\right\rangle$
$\Rightarrow U$ contains all but a finite number of the term of $\left\langle f\left(x_{n}\right)\right\rangle$

$$
\Rightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)
$$

\Leftarrow

Suppose that if $x_{n} \rightarrow x_{0}$ in X, then $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ in X^{-}
To prove that f is continuous at x_{0} ?.

Suppose that f is not continuous at x_{0}

$$
\Rightarrow \exists \epsilon>0 \text { such that } \forall n \in N, f\left(B_{\frac{1}{n}}\left(x_{0}\right)\right) \nsubseteq B_{\epsilon}^{`}\left(f\left(x_{0}\right)\right)
$$

i.e.
. $\forall n \in N, \exists x_{n} \in X$ such that if $d\left(x_{n}, x_{o}\right)<\frac{1}{n}$
then,

$$
\begin{aligned}
& d^{\prime}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right) \geq \epsilon \\
& \Rightarrow f\left(x_{n}\right) \leftrightarrow f\left(x_{0}\right), \text { but } x_{n} \rightarrow x_{0}, \mathrm{C}!
\end{aligned}
$$

Since $\epsilon>0 \Longrightarrow \exists k \in N$ such that.

$$
\frac{1}{k}<\epsilon
$$

$$
\Rightarrow d\left(x_{n}, x_{0}\right)<\frac{1}{n}<\frac{1}{k}<\epsilon, \forall n>k .
$$

$\therefore f$ is continuous at x_{0}.
Theorem 5.7: Let $f:(X, d) \rightarrow\left(X^{\prime}, d^{\prime}\right)$ and $g:\left(X^{\prime}, d^{\prime}\right) \rightarrow\left(X^{\prime \prime}, d^{\prime}\right)$ be a mapping such that f is continuous at $x_{0} \in X$ and g is continuous at $f\left(x_{0}\right) \in X^{\prime}$, then $g \circ f$ continuous at $x_{0} \in X$.

Proof:

To prove that $g \circ f:(X, d) \rightarrow\left(X^{\prime \prime}, d^{\prime}\right)$ is continuous at $x_{0} \in X$. ?
Let $\left\langle x_{n}\right\rangle$ be a sequence in X such that

$$
\begin{aligned}
& x_{n} \rightarrow x_{0} \text { and } f \text { is continuous at } x_{0} \\
& \Rightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) .(\text { why? })
\end{aligned}
$$

$\because g$ is continuous at $f\left(x_{0}\right)$

$$
\begin{aligned}
& \Rightarrow g\left(f\left(x_{n}\right)\right) \rightarrow g\left(f\left(x_{0}\right)\right), \\
& \Rightarrow(g \circ f)\left(x_{n}\right) \rightarrow(g \circ f)\left(x_{0}\right),(\text { why? }) \\
& \Rightarrow g \circ f \text { is continuous at } x_{0} .
\end{aligned}
$$

Examples 5.8: Let $f: R \rightarrow R$ be a mapping such that

$$
f(x)= \begin{cases}1 & \text { if } \quad x>0 \\ 0 & \text { if } \quad x=0 \\ -1 & \text { if } x<0\end{cases}
$$

Is f continuous mapping at $x=0$. ?

Solution:

The function f is not continuous at $x=0$. Since

$$
\frac{1}{n} \rightarrow 0
$$

but

$$
f\left(\frac{1}{n}\right)=1 \Longrightarrow 1 \neq f(0)=0
$$

Example 5.9: Let $f:[a, b] \rightarrow R$ be a mapping such that

$$
f(x)= \begin{cases}1 & \text { if } x \in Q \\ 2 & \text { if } x \notin Q\end{cases}
$$

Then, f is not continuous.

Solution:

Let $x_{0} \in[a, b]$. If

$$
\begin{aligned}
& x_{0} \notin Q \Longrightarrow \exists x_{n} \in Q \text { such that, } \\
& x_{n} \rightarrow x_{0}, \text { but } f\left(x_{n}\right)=1 \\
& \Rightarrow 1 \neq f\left(x_{0}\right)=2
\end{aligned}
$$

Also, if $x_{0} \in Q$

$$
\Rightarrow \exists x_{n} \in Q^{c} \text { such that }
$$

$$
x_{n} \rightarrow x_{0}, \text { but } f\left(x_{n}\right)=2
$$

$$
\Rightarrow 2 \neq f\left(x_{0}\right)=1
$$

$$
\Rightarrow f \text { is not continuous. }
$$

Definition 5.10: If $f: X \rightarrow X^{`}$ is a mapping and $S \subset X$, then $f_{s}: S \rightarrow X^{`}$ is also a mapping such that $f_{s}(x)=f(x), \forall x \in S$. Therefore, f_{s} is called the restriction of f to S.

Remark 5.10": If f is continuous, then so is f_{s}, but the converse is not true.

5.2 The Continuous of Real Valued Mapping استمرارية الاو ال ذات القيمة)

 pDefinition 5. 11: Let X be a metric space, then,

$$
C(x)=\{f / f: X \rightarrow R \text { is continuous mapping }\}
$$

is the set of all continuous real valued mapping then,

$$
C(x) \neq \varphi
$$

If $\exists f \in C(x)$ such that

$$
f(x)=c, \text { where } c \in R
$$

then,
$\forall x \in X$ is continuous.

Theorem 5.12: If f and g are continuous real valued mapping, then:
$1-f+g$ is continuous such that $(f+g)(x)=f(x)+g(x)$.
$2-f . g$ is continuous such that $(f \cdot g)(x)=f(x) \cdot g(x)$.
3- $\forall a \in R, a f$ is continuous such that $(a f)(x)=a f(x)$.
4- If $g(x) \neq 0$, then $\frac{f}{g}$ is continuous such that $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$.
5-| $|f|$ is continuous such that $|f|(x)=|f(x)|$.

Proof:

1-To prove that $f+g: X \rightarrow R$ is continuous?.
Let $x_{0} \in X$ and $\left\langle x_{n}\right\rangle$ be a sequence in X such that

$$
x_{n} \rightarrow x_{0}
$$

$\because f$ is continuous

$$
\Rightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) \text { in } R
$$

$\because g$ is continuous

$$
\begin{aligned}
& \Rightarrow g\left(x_{n}\right) \rightarrow g\left(x_{0}\right) \text { in } R \\
& \Rightarrow f\left(x_{n}\right)+g\left(x_{n}\right) \rightarrow f\left(x_{0}\right)+g\left(x_{0}\right) \text { in } R \\
& \Rightarrow(f+g)\left(x_{n}\right) \rightarrow(f+g)\left(x_{0}\right) \\
& \Rightarrow f+g \text { is continuous at } x_{0} .
\end{aligned}
$$

Remarks 5.13:

1- From 1and 2 in above theorem $(C(x),+,$.$) is a vector space. (why ?)$
2- Any polynomial $p(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ is continuous. (why ?)

5.3 The Real Mapping on Compact space الاوال الحقيقة في الفضاء)

(المرصوص)

Definition 5.14 (Bounded Mapping)

A mapping $f: X \rightarrow R$ is called bounded if there is $M>0$ such that

$$
|f(x)| \leq M, \forall x \in X .
$$

Or
$R_{f}($ range of $f)$ is bounded set in R.

Example 5.15:

A mapping $f(0,1) \rightarrow R$ such that $f(x)=2 x, \forall x \in(0,1)$ is bounded.

Solution:

Since $\exists 2>0$, then $|f(x)|=|2 x| \leq 2, \forall x \in(0,1)$. That means:

$$
|f(x)| \leq 2, \forall x \in(0,1), \text { with } M=2 .
$$

Theorem 5.16: Let X and $X^{\text {}}$ be metric space and $f: X \rightarrow X$ be a continuous mapping if X is compact, then $f(X)$ is compact.

Proof:

Let X be a compact space. To prove that $f(X)$ is compact.
Suppose that $\left\{V_{\alpha} \mid \alpha \in \Lambda\right\}$ be any open cover of $f(X), \forall x \in X$.

$$
\Rightarrow f(X) \subseteq U_{\alpha \in \Lambda} V_{\alpha}
$$

and

$$
\begin{aligned}
& V_{\alpha} \subseteq_{\text {open }} X^{\prime}, \forall \alpha \in \Lambda . \\
& \Rightarrow f^{-1}(f(X)) \subseteq f^{-1}\left(U_{\alpha \in \Lambda} V_{\alpha}\right) . \\
& \Rightarrow X \subseteq U_{\alpha \in \Lambda} f^{-1}\left(V_{\alpha}\right) .
\end{aligned}
$$

$\because f$ is continuous and $V_{\alpha} \subseteq_{\text {open }} X^{\prime}, \forall \alpha \in \Lambda$.

$$
\begin{aligned}
& \Rightarrow f^{-1}\left(V_{\alpha}\right) \subseteq_{\text {open }} X, \forall \alpha \in \Lambda . \\
& \Rightarrow\left\{f^{-1}\left(V_{\alpha}\right) \mid \alpha \in \Lambda\right\} \text { is an open cover of } X .
\end{aligned}
$$

$\because X$ is compact, then
$\exists\left\{f^{-1}\left(V_{\alpha_{i}} \mid i=1,2, \ldots, n\right\}\right.$ is a finite sub cover.
i.e.,

$$
\begin{aligned}
& X \subseteq U_{i=1}^{n} f\left(V_{\alpha_{i}}\right) . \\
& \Rightarrow f(X) \subseteq U_{i=1}^{n} V_{\alpha_{i}} . \\
& \Rightarrow f(X) \text { is compact. }
\end{aligned}
$$

Theorem 5.17: A mapping $f: X \rightarrow R$ is bounded iff is continuous on a compact space X.

Proof:

$\because f: X \rightarrow R$ is continuous and X is compact, then by above theorem $f(X)$ is compact in R.
$\Leftrightarrow f(X)$ is bounded.
$\Leftrightarrow \exists M>0$ such that $|f(x)| \leq M, \forall x \in X$.
$\Leftrightarrow f$ is bounded.
Remark 5.18: If $f: X \rightarrow R$ is continuous and X is not compact, then f is not necessary bounded, consider the following examples:

1- $f(x)=\frac{1}{x}, \forall x \in(0, \infty)$
$\Rightarrow f$ is continuous and not bounded.
2- $f(x)=2 x, \forall x \in(0,1) \Rightarrow f$ is continuous and bounded, since
$\exists 2>0$ such that $|2 x| \leq 2, \forall x \in(0,1)$.
Or

$$
\begin{aligned}
& f(x)=f((0,1))=(0,2) \text { is bounded. } \\
& \Rightarrow f \text { is bounded. }
\end{aligned}
$$

Theorem 5.19: If $f: X \rightarrow R$ is a real continuous mapping and X is compact space, then there are $x_{0}, y_{0} \in X$ such that

$$
f\left(y_{0}\right) \leq f(x) \leq f\left(x_{0}\right), \forall x \in X .
$$

Proof:

$\because f$ is continuous and X is compact.
$\Rightarrow f(X)=Y$ is compact in R.
$\Rightarrow f(X)=Y$ is bounded and closed [any compact subset of metric space is closed and bounded].
$\Rightarrow Y$ has Sup and Inf.
Let $\operatorname{Sup} Y=M \Rightarrow M \in Y,(Y$ is closed $)$

$$
\Rightarrow \exists x_{0} \in X \text { such that } f\left(x_{0}\right)=M .
$$

Also, let $m=\operatorname{Inf} Y \Rightarrow m \in Y,(Y$ is closed $)$

$$
\begin{aligned}
& \Rightarrow \exists y_{0} \in X \text { such that } f\left(y_{o}\right)=m \\
& \Rightarrow \exists x_{0}, y_{0} \in X \text { such that }
\end{aligned}
$$

$$
f\left(y_{0}\right) \leq f(x) \leq f\left(x_{0}\right), \forall x \in X .
$$

