The Continuity

Chapter Five: The Continuity (الاستمرارية)

Definition 5.1: Let (X, d) and (X, d) be a metric space. A mapping $f: X \to X$ is called continuous at a point $x_0 \in X$ if for any $\epsilon > 0$, there is $\delta > 0$ (δ depends on ϵ and x_0) such that for each $x \in X$, if

$$d(x, x_0) < \delta$$
, then $d(f(x), f(x_0)) < \epsilon$.

Or

The $f: X \to X$ is continuous at $x_0 \in X \Leftrightarrow$ for any ball $B_{\epsilon}(f(x_0))$ with center $f(x_0)$ and radius ϵ in X, there is a ball $B_{\delta}(x_0)$ with center x_0 and UL BALES radius δ in X such that

$$f(B_{\delta}(x_0)) \subseteq B_{\epsilon}(f(x_0))$$

Remark 5.2: A mapping $f: X \to X$ is called continuous (or continuous on X) iff f is continuous at each point in X.

Theorem 5.3: A mapping $f: (X, d) \to (X, d)$ is continuous iff for each open set U in X[`], $f^{-1}(U)$ is open set on X[`].

i.e.

$$f: X \to X$$
 is continuous $\Leftrightarrow \forall U \subseteq_{open} X$,

then,

$$\int_{0}^{\infty} f^{-1}(U) \subseteq_{0pen} X \text{ where } f^{-1}(U) = \{x \in X/f(x) \in U\}$$

Proof: \Rightarrow

Suppose that f is continuous on X and $U \subseteq_{open} X$

To prove $f^{-1}(U) \subseteq_{open} X$?

Let $x_0 \in f^{-1}(U)$

 \Leftarrow

The Continuity

$$\Rightarrow f(x_0) \in U \xrightarrow{U \text{ is}} \exists \epsilon > 0 \text{ such that } B_{\epsilon}^{\circ}(f(x_0)) \subset U$$

Since *f* is continuous $\Rightarrow \exists$ a ball $B_{\delta}(x_0)$ on *X* such that

$$\begin{split} f(B_{\delta}(x_0)) &\subset B_{\epsilon}^{\circ}(f(x_0)) \subset U \\ & \Rightarrow f(B_{\delta}(x_0)) \subset U \Rightarrow B_{\delta}(x_0) \subset f^{-1}(U) \\ & \Rightarrow f^{-1}(U) \subseteq_{open} X. \blacksquare \end{split}$$

Suppose that, $\forall U \subseteq_{open} X$, then,

$$f^{-1}(U) \subseteq_{open} X$$

To prove f is continuous?

$$\Rightarrow f^{-1}(U) \subseteq_{open} X.$$

$$\Rightarrow f^{-1}(U) \subseteq_{open} X.$$
Suppose that, $\forall U \subseteq_{open} X$, then,
 $f^{-1}(U) \subseteq_{open} X$
To prove f is continuous?
Let $x_0 \in X$ and $B'_{\epsilon}(f(x_0))$ be a ball in X'
 $\Rightarrow B'_{\epsilon}(f(x_0))$ is an open set in X .
 $\Rightarrow f^{-1}(B'_{\epsilon}(f(x_0)))$ is an open set in X and $x_0 \in f^{-1}(B'_{\epsilon}(f(x_0)).$
 $\Rightarrow \exists \delta > 0$ such that $B_{\delta}(x_0) \subset f^{-1}(B'_{\epsilon}(f(x_0)).$
 $\Rightarrow f(B_{\delta}(x_0)) \subset B'_{\epsilon}(f(x_0)).s$
 $\Rightarrow f$ is continuous.

Theorem 5.4: A mapping $f: (X, d) \to (X, d)$ is continuous iff for each closed set F in X, then $f^{-1}(F)$ is closed set in X.

Proof: \Rightarrow

Suppose that f is continuous and F is closed set in X`

To prove $f^{-1}(F)$ is closed in X? : F is closed in X` $\implies X^{} - F$ is open in $X^{}$ $\Rightarrow f^{-1}(X - F)$ is open in X. But $f^{-1}(X - F) = X - f^{-1}(F)$ $\Rightarrow f^{-1}(F)$ is a closed set in X. \Leftarrow To prove that *f* is continuous?

aneam Annad Mansor Let *U* be an open set in $X^{\sim} \Longrightarrow X^{\sim} - U$ is closed in X^{\sim}

$$\Rightarrow f^{-1}(X - U)$$
 is closed in X. (why ?)

But

$$f^{-1}(X - U) = X - f^{-1}(U)$$

$$\Rightarrow f^{-1}(U)$$
 is open in X

 \Rightarrow *f* is continuous.

(الاستمرارية والتقارب) 5.1. The Convergence and Continuity

Theorem 5.6: A mapping $f: (X, d) \to (X^{\hat{}}, d^{\hat{}})$ is continuous at $x_o \in X$ iff for every sequence $\langle x_n \rangle$ in X converges to x_0 , then the sequence $\langle f(x_n) \rangle$ in X converges to $f(x_0)$.

Proof: \Rightarrow

Suppose that f is continuous at x_o and $\langle x_n \rangle$ is a sequence in X, such that

 $x_n \to x_0$, to prove that $f(x_n) \to f(x_0)$ in X^{*}.

Let *U* be an open set to *X*` such that $f(x_0) \in U$.

$$\Rightarrow f^{-1}(U)$$
 is open in X, and $x_0 \in f^{-1}(U)$.

Since $x_n \to x_0$

 $\Rightarrow f^{-1}(U)$ contains all but a finite number of the term of $\langle x_n \rangle$.

 \Rightarrow U contains all but a finite number of the term of $\langle f(x_n) \rangle$

$$\Rightarrow f(x_n) \rightarrow f(x_0). \blacksquare$$

Suppose that if $x_n \to x_0$ in X, then $f(x_n) \to f(x_0)$ in X`

To prove that f is continuous at x_0 ?.

Suppose that f is not continuous at x_0

$$\Rightarrow \exists \epsilon > 0 \text{ such that } \forall n \in N, f(B_{\frac{1}{n}}(x_0)) \not\subseteq B_{\epsilon}^{\circ}(f(x_0))$$

i.e.

 \Leftarrow

$$\forall n \in N, \exists x_n \in X \text{ such that if } d(x_n, x_o) < \frac{1}{n}$$

then,

$$d^{`}(f(x_n), f(x_0)) \ge \epsilon$$
$$\Rightarrow f(x_n) \nrightarrow f(x_0), \text{ but } x_n \to x_0, C!$$

Since $\epsilon > 0 \implies \exists k \in N$ such that.

$$\frac{1}{k} < \epsilon$$

$$\Rightarrow d(x_n, x_0) < \frac{1}{n} < \frac{1}{k} < \epsilon, \forall n > k.$$

 \therefore *f* is continuous at x_0 .

Theorem 5.7: Let $f: (X, d) \to (X^{\check}, d^{\check})$ and $g: (X^{\check}, d^{\check}) \to (X'', d'')$ be a mapping such that f is continuous at $x_0 \in X$ and g is continuous at $f(x_0) \in X$, then $g \circ f$ continuous at $x_0 \in X$.

To prove that $g \circ f: (X, d) \to (X'', d'')$ is continuous at $x_0 \in X$.? Let $\langle x_n \rangle$ be a sequence in X and $x_0 \in X$. visibility profil praheam An

 $x_n \rightarrow x_0$ and f is continuous at x_0

$$\Rightarrow f(x_n) \rightarrow f(x_0).(\text{why?})$$

 \therefore g is continuous at $f(x_0)$

$$\Rightarrow g(f(x_n)) \to g(f(x_0)),$$

$$\Rightarrow (g \circ f)(x_n) \to (g \circ f)(x_0), \text{ (why?)}$$

$$\Rightarrow g \circ f \text{ is continuous at } x_0.\blacksquare$$

Examples 5.8: Let $f: R \rightarrow R$ be a mapping such that

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Is f continuous mapping at x = 0.?

Solution:

The function *f* is not continuous at x = 0. Since

Chapter Five:

The Continuity

$$\frac{1}{n} \rightarrow 0,$$

but

$$f\left(\frac{1}{n}\right) = 1 \Longrightarrow 1 \neq f(0) = 0.\blacksquare$$

Example 5.9: Let $f:[a,b] \rightarrow R$ be a mapping such that

$$f(x) = \begin{cases} 1 & \text{if } x \in Q \\ 2 & \text{if } x \notin Q \end{cases}$$

Then, f is not continuous.

Solution:

 $x_{0} \in [a, b]. \text{ If}$ $x_{0} \notin Q \Longrightarrow \exists x_{n} \in Q \text{ such that,}$ $x_{n} \rightarrow x_{0}, \text{ but } f(x_{n}) = 1$ $\Longrightarrow 1 \neq f(x_{0}) = 2$ $f \ x_{0} \in Q$ Let $x_0 \in [a, b]$. If Also, if $x_0 \in Q$ $\Rightarrow \exists x_n \in Q^c$ such that $x_n \to x_0$, but $f(x_n) = 2$ $\Rightarrow 2 \neq f(x_0) = 1$

 \Rightarrow *f* is not continuous.

Definition 5.10: If $f: X \to X$ is a mapping and $S \subset X$, then $f_S: S \to X$ is also a mapping such that $f_s(x) = f(x), \forall x \in S$. Therefore, f_s is called the **restriction** of *f* to *S*.

The Continuity

Remark 5.10": If f is continuous, then so is f_s , but the converse is not true.

(استمرارية الدوال ذات القيمة The Continuous of Real Valued Mapping) p الحقيقية) a, humanson patean humanson humanson

Definition 5. 11: Let *X* be a metric space, then,

 $C(x) = \{f/f : X \to R \text{ is continuous mapping}\}$

is the set of all continuous real valued mapping then,

 $C(x) \neq \varphi$.

If $\exists f \in C(x)$ such that

f(x) = c, where $c \in R$,

then,

 $\forall x \in X$ is continuous.

Theorem 5.12: If f and g are continuous real valued mapping, then:

1-f + g is continuous such that (f + g)(x) = f(x) + g(x).

2-*f*. *g* is continuous such that (f.g)(x) = f(x).g(x).

3-∀*a* ∈ *R*, *af* is continuous such that (af)(x) = af(x).

4- If $g(x) \neq 0$, then $\frac{f}{g}$ is continuous such that $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$.

5-|f| is continuous such that |f|(x) = |f(x)|.

Proof:

1-To prove that $f + g: X \rightarrow R$ is continuous?.

Let $x_0 \in X$ and $\langle x_n \rangle$ be a sequence in X such that

$$x_n \to x_0$$

: f is continuous

$$\Rightarrow f(x_n) \to f(x_0) \text{ in } R.$$

 \therefore g is continuous

$$\Rightarrow f(x_n) \to f(x_0) \text{ in } R.$$

continuous
$$\Rightarrow g(x_n) \to g(x_0) \text{ in } R$$

$$\Rightarrow f(x_n) + g(x_n) \to f(x_0) + g(x_0) \text{ in } R$$

$$\Rightarrow (f + g)(x_n) \to (f + g)(x_0)$$

$$\Rightarrow f + g \text{ is continuous at } x_0. \blacksquare$$

Remarks 5.13:

1- From 1 and 2 in above theorem $(\mathcal{C}(x), +, .)$ is a vector space. (why ?)

2- Any polynomial $p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$ is continuous. (why ?)

(الدوال الحقيقية في الفضاء 5.3 The Real Mapping on Compact space (الدوال الحقيقية في الفضاء المرصوص)

Definition 5.14 (Bounded Mapping)

A mapping $f: X \to R$ is called bounded if there is M > 0 such that

$$|f(x)| \le M, \forall x \in X.$$

Or

 R_f (range of f) is bounded set in R.

The Continuity

Example 5.15:

A mapping $f(0,1) \rightarrow R$ such that $f(x) = 2x, \forall x \in (0,1)$ is bounded.

Solution:

Since $\exists 2 > 0$, then $|f(x)| = |2x| \le 2$, $\forall x \in (0, 1)$. That means:

 $|f(x)| \leq 2, \forall x \in (0, 1), \text{ with } M = 2.\blacksquare$

Theorem 5.16: Let X and X be metric space and $f: X \to X$ be a continuous mapping if X is compact, then f(X) is compact.

Proof:

Let X be a compact space. To prove that f(X) is compact.

Suppose that $\{V_{\alpha} \mid \alpha \in \Lambda\}$ be any open cover of $f(X), \forall x \in X$.

$$\Longrightarrow f(X) \subseteq U_{\alpha \in \Lambda} V_{\alpha} .$$

and

$$\Rightarrow f(X) \subseteq U_{\alpha \in \Lambda} V_{\alpha} .$$

and
$$V_{\alpha} \subseteq_{open} X`, \forall \alpha \in \Lambda .$$

$$\Rightarrow f^{-1}(f(X)) \subseteq f^{-1}(U_{\alpha \in \Lambda} V_{\alpha}).$$

$$\Rightarrow X \subseteq U_{\alpha \in \Lambda} f^{-1}(V_{\alpha}).$$

$$\because f \text{ is continuous and } V_{\alpha} \subseteq_{open} X`, \forall \alpha \in \Lambda.$$

$$\Longrightarrow f^{-1}(V_{\alpha}) \subseteq_{open} X, \forall \alpha \in \Lambda.$$

$$\Longrightarrow \{ f^{-1}(V_{\alpha}) \mid \alpha \in \Lambda \} \text{ is an open cover of } X.$$

 $\therefore X$ is compact, then

$$\exists \{ f^{-1}(V_{\alpha_i} \mid i = 1, 2, \dots, n \} \text{ is a finite sub cover.}$$

i.e.,

$$X \subseteq U_{i=1}^{n} f(V_{\alpha_{i}}).$$
$$\Rightarrow f(X) \subseteq U_{i=1}^{n} V_{\alpha_{i}}.$$

 $\Rightarrow f(X)$ is compact.

Theorem 5.17: A mapping $f: X \to R$ is bounded iff is continuous on a compact space X.

Proof:

 $: f: X \to R$ is continuous and X is compact, then by above theorem f(X)MProfOrR is compact in R.

 $\Leftrightarrow f(X)$ is bounded.

$$\Leftrightarrow \exists M > 0 \text{ such that } |f(x)| \le M, \forall x \in X.$$

 \Leftrightarrow *f* is bounded.

Remark 5.18: If $f: X \to R$ is continuous and X is not compact, then f is not necessary bounded, consider the following examples:

$$1 - f(x) = \frac{1}{x}, \forall x \in (0, \infty)$$

 \Rightarrow *f* is continuous and not bounded.

2 - f(x) = 2x, $\forall x \in (0, 1) \Longrightarrow f$ is continuous and bounded, since

 $\exists 2 > 0$ such that $|2x| \leq 2$, $\forall x \in (0,1)$.

Or

f(x) = f((0,1)) = (0,2) is bounded.

 \Rightarrow *f* is bounded.

Theorem 5.19: If $f: X \to R$ is a real continuous mapping and X is compact space, then there are $x_0, y_0 \in X$ such that

$$f(y_0) \le f(x) \le f(x_0), \forall x \in X.$$

Proof:

 \therefore f is continuous and X is compact.

 $\Rightarrow f(X) = Y$ is compact in *R*.

 $\Rightarrow f(X) = Y$ is bounded and closed [any compact subset of metric tol Dr Raheam A space is closed and bounded].

 \Rightarrow *Y* has *Sup* and *Inf*.

Let $Sup Y = M \Longrightarrow M \in Y$, (*Y* is closed)

 $\Rightarrow \exists x_0 \in X \text{ such that } f(x_0) = M.$

Also, let $m = Inf Y \implies m \in Y$, (Y is closed)

 $\Rightarrow \exists y_0 \in X \text{ such that } f(y_0) = m$

 $\Rightarrow \exists x_0, y_0 \in X$ such that

y0): $f(y_0) \le f(x) \le f(x_0)$, $\forall x \in X$.