Chapter One

نظرية الحلقات

Theory Ring

Definition: By a ring we mean a non- 1_1 empty set R with two binary operations * and ° is called a ring and is denoted by (R, *, °) if is a belian group (+,R) -1 .is a semi-group (°,R) -2

. * is distributive (on both sides) over $^{\circ}$ -3

Another defini tion : it A mathematical system (R , * , °) is called a ring if

. a , b \in R , a \ast b \in R (closed) under \forall -1

.a * b = b * a \forall a , b ∈ R (commutative) -2

- c = a * (b * c) \forall a , b ,c ∈ R * (a * b) -3 . (associative)
- $e \in R \ni a * e = e * a = e \forall a, b, c \in R \exists -4$. (identity)

a ∈ R ∃ -a ∈ R ∋ a * (-a) = (-a) = e \forall -5 . (inverse) . a, b ∈ R, a ∘ b ∈ R (closed)under \forall -6 c = a ∘ (b ∘ c) \forall a, b, c ∈ R ∘ (a ∘ b) -7 . (associative) a ∘ (b * c) = (a ∘ b) * (a ∘ c) (two sides -8 distributive) and (b * c) ∘ a = (b ∘ a) * (c ∘ a)) (\forall a, b, c ∈ R)

. Some Important examples of rings : 2 – 1

is a ring , such that R is the real $\left(\ \cdot,\ +\ ,R\ \right)$ -1 number

if R ={ a + b $\sqrt{3}$: a, b \in Z }, then (R, + , •) is a -2 . ring

is a ring, where P(X) is a Power $(\cap, \Delta, P(X))$ -3 3 ,set of a set X

and Δ is a symmetric difference A Δ B = (A – B) . U(B – A)

is a ring . (P(X) , Δ , \cap) is a ring : But (\cap , Δ , P(X)) . (P(X) , Δ , \cup) is not ring

Now, to prove the intersection is distribute to a .seem ethic difference

First, we need the following. A \cap (B – C) = (A \cap B .) –(A \cap C)

It's clear that (P (X) , Δ) is a belian group, and (P .(X) , \cap) is a semi-group

 $A \cap (B \Delta C) = A \cap [(B - C)U(C - B)] = [A \cap (B - C)]U[A \cap (C - B)] = [(A \cap B) - (A \cap C)]U$ $.[(A \cap C) - (A \cap B)] = (A \cap B)\Delta(A \cap C)$

Note : $A U (B - C) \neq (A U B) - (A U C)$