1-5 Examples

If R is a set of functions $f: R \# \longrightarrow R \#(R,+, \bullet)$ is a ring
define (+ and.) $(f+g)(a)=f(a)+g(a),(f . g)(a)$ $=\mathrm{f}(\mathrm{a}) . \mathrm{g}(\mathrm{a}) . \forall \mathrm{a} \in R$ \#

Solution: $1 \forall f, g \in R .(f+g)(a)=f(a)+g(a) \in$ R. $\forall a \in R$ (close)
(2) $\forall f, g, h \in R .(f+g)+h)(a)=(f+g)(a)+h(a)$
$=(f(a)+g(a))+h(a)=f(a)+(g(a)+h(a))=f(a)+$ (($g+h$) (a)) (associative)
(3) Ker f is the identity, hence ($f+\operatorname{ker} f$) (a) $=f(a)$ $+\operatorname{ker} f(a)=f(a)+0=f(a)$. So $(\operatorname{ker} f+f)(a)=f(a)$.
(4) $\forall f \in R \exists-f \in R \ni(f+(-f))(a)=f(a)+(-f(a))=f$
(a) $-f(a)$ So $(-f+f)(a)=-f(a)+f(a)=0$ (inverse)
(5) $\forall f, g \in R,(f+g)(a)=f(a)+g(a)=g(a)+f(a)=$ ($g+f$) (a) (commutatin) Thus ($R,+$) is a belian group.
(6) $\forall f, g \in R .(f \cdot g)(a)=f(a) . g(a) \in R$ (closed under)
(7) $\forall f, g, h \in R .((f . g)(a)) \cdot h(a)=(f(a) . g(a))$

- $h(a)=f(a) .(g(a) \cdot h(a))=f(a) .((g . h)(a))$
(associative ander.) Hence (R, .) is a semi-group.
$8 \forall f, g, h \in R .(f .(g+h))(a)=f(a) .(g+h)(a)$
$=f(a) \cdot(g(a)+h(a))=f(a) \cdot g(a)+f(a) \cdot h(a)$ (left distriputire) $6((g+h) . f)(a)=((g+h)(a)) \cdot f(a)$
$=(g(a)+h(a)) \cdot f(a) g(a) \cdot f(a)+h(a) \cdot f(a)(R i g h t$ distriputive). Therefore ($R,+, \bullet$) is a ring .
(9) $\forall f, g \in R .(f . g)(a)=f(a) \cdot g(a)=g(a) \cdot f(a)=$ (g.f)(a) (commutativ)
(10) $\forall f \in R \exists I \in R \ni(f . i)(a)=f(a) . i(a)=f(a) . i=$ $f(a)$ So (i.f) (a) $=f(a)$.
[where $\mathrm{i}(\mathrm{a})=1 \forall \mathrm{a} \in R \#$] (identity)
Thus ($R,+, \bullet$) is a commutative ring with identity.

