, But (R , +, •) is not a ring

because the left distributive law is not achieved $f \circ$. (g + h) \neq (f \circ g) + (f \circ h)

.But (hom R ,+, °) is a ring with identity

. Where (f + g)(a) = f(a) * g(a)

solution: The Proof of (hom G , +) is a belian group

is simmilarty to the previous proof

Now, to Prove (hom G, •) is semi group

 $\begin{aligned} f(a) \circ g(a) &\in R (f \circ g) \circ h)(a) &= (f \circ g) = (a)(f \circ g) \\ (a) \circ h(a) &= (f(a) \circ g(a)) \circ h(a) \end{aligned}$

 $f(a) \circ (g(a) \circ h(a)) = f(a) \circ ((g \circ h)(a)) = (f \circ (g \circ = h))(a)$

. Hence (hom G , •) is semi group

,

Note: The inverse of each function in hom G is \forall f , \in hom G \exists -f \in hom G

such that $(-f)(a) = f(a) - 1 \in \text{hom G And the closed}$

we can show that 7 (f + g)(a * b) = f (a * b) * g (a * b) = f(a) * f(b) * g(a) * g (b) = f(a) * g(a) * f . (b) * g(b) * (f + g)(b)

: Finily ; we must prove the distripative laut

 $f((g + h)(a)) = f(g(a) + h(a)) = = (a)[f \circ (g + h)]$ $f(g(a)) * f(h(a)) = (f \circ g)(a) * (f \circ h)(a) = (f \circ g + ... f \circ h)(a)$

,By the Same way

we can prove that $(f \circ (g + h))(a) = (f \circ g + f \circ h)$ (a)

. Therefore (hom G , + , \circ) is a ring