, But ($R,+, \circ$) is not a ring
because the left distributive law is not achieved $f \circ$
$.(g+h) \neq(f \circ g)+(f \circ h)$
.But (hom $\mathrm{R},+, \circ$) is a ring with identity
. Where $(f+g)(a)=f(a) * g(a)$
solution: The Proof of (hom $G,+$) is a belian group
is simmilarty to the previous proof
Now, to Prove (hom G,o) is semi group
$f(a) \circ g(a) \in R(f \circ g) \circ h)(a)=(f \circ g)=(a)(f \circ g)$
$(a) \circ h(a)=(f(a) \circ g(a)) \circ h(a)$
$f(a) \circ(g(a) \circ h(a))=f(a) \circ((g \circ h)(a))=(f \circ(g \circ=$
h))(a)
. Hence (hom G , o) is semi group

Note: The inverse of each function in hom G is $\forall \mathrm{f}$,\in hom G $\exists-f \in$ hom G
such that $(-\mathrm{f})(\mathrm{a})=\mathrm{f}(a)-1 \in$ hom G And the closed
we can show that $7(f+g)(a * b)=f(a * b) * g$ $(\mathrm{a} * \mathrm{~b})=\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{b}) * \mathrm{~g}(\mathrm{a}) * \mathrm{~g}(\mathrm{~b})=\mathrm{f}(\mathrm{a}) * \mathrm{~g}(\mathrm{a}) * \mathrm{f}$. (b) $* g(b) *(f+g)(b)$
: Finily ; we must prove the distripative laut $f((g+h)(a))=f(g(a)+h(a))==(a)[f \circ(g+h)]$ $f(g(a)) * f(h(a))=(f \circ g)(a) *(f \circ h)(a)=(f \circ g+$ $. f \circ h)(a)$
,By the Same way we can prove that $(f \circ(g+h))(a)=(f \circ g+f \circ h)$ (a)
. Therefore (hom $\mathrm{G},+, \circ$) is a ring

