Chapter three

Ideals

:Definition :3-1

Anon-empty subset I of a ring (R , + , .) is called an ideal of R

a , b \in I implies a – b \in I \forall 1

 $. \forall a \in I \text{ and } r \in R \text{ imply } a \cdot r \in I \text{ and } r \cdot a \in I @$

:Definition :3-1

Anon-empty subset I of a ring (R , + , .) is called a right (left) ideal if

. \forall a , b \in I implies a – b \in I 1

. $\forall a \in I \text{ and } r \in R \text{ imply } a \cdot r \in I (r \cdot a \in I)$ 2

; Clearly

a right ideal or left ideal is a subring of R and . every ideal is both right and left, so an ideal

```
.is sometimes called a two-sided ideal
```

Trivially, in a commutative ring every right ideal or , left ideal is two-sided. In every ring R and R are ideals called trivial ideals (0)

:Examples:3-3.

is ideal in a ring ((3), +12, (12, 12+, (3))

.•12) So it's a subring

In general (a) = { na : $n \in Z$ } . ((a) ,+ , .) is an **2** . ideal. in aring (Z, + , .)

Because na - ma = (n - m) a \in (a) and in (ma) =

. (mn) a \in (a) where n , m \in Z

for example (2) = Ze i.e. ((2),+,.) or (Ze, .+,.) is an ideal of (Z, +,.)

let (R, +, .) be a ring and I = { f ∈ R : f (I) = 0 } (f . - g)(I) = f(I) - g(I) = 0 - 0 = 0 \forall h ∈ R, f, g ∈ I

 $h(I) \cdot f(I) = h(I) \cdot 0 = 0 = (I)(h \cdot f)$

. Thus (I, +, .) is an ideal of a ring (R, +, .)

Definition: A ring (R, +, .) is called a simple :3-4

. ring if it has no proper ideal of it

.(or it has only the triveal ideals)