:Remark :8-2
.The center of a ring is a subring
:Proof
$. \emptyset \neq$ Since $0 . x=x .0 \Longrightarrow 0 \in Z(R) \Longrightarrow Z(R)$
Let $a-b \in Z(R)$, then $(a-b) x=a x-b x=x a-x b=$ $\mathrm{x}(\mathrm{a}-\mathrm{b})$

Thus $a-b \in Z(R)$ Furthers, ($a \cdot b) x=a(b x)=a(x b)$
$=(a x) b=(x a) b=x(a b)$
Hence $a . b \in Z(R)$ Therfore $Z(R)$ is a subring of a . ring R
.Remark: [$f R$ is a com . ring . Then cent . $R=R$:Definition 2-9

Let S be a subset of a ring R. Then the -Smallest subring of R containing S Is called the subring .generated by S
:Definition 2-10
If there exists a positive integer n , Such that na= .0 for each clement $a \in R$

The smallest such Positive integer is called the .characteristic of R

If no such positive integer exists, R is said to lave .characteristic zero
.The characteristic of R is denoted char R
:Examples:2-11
.is a ring has characteristic zero (., + , Z)
And ($n,+n, . n$) is a ring of integers modulen has . characteristic n

Also ($\mathrm{Q},+,$.) and ($\mathrm{R},+$,) are rings have .characteristic Zero
.is a ring has characteristic $2(\cap, \Delta, \mathrm{P}(\mathrm{x}))$
Because $\forall A \in P(X) .2 A=A \Delta A=(A-A) U(A-A)$
$. \phi=\varnothing \cup$
:Theorem :2-12
,Let ($\mathrm{R},+,$.) be a ring with identity
then ($\mathrm{R},+,$.) has a characteristic $\mathrm{n}>0$ if and only if n is the lest positive integer such that $\mathrm{n} .1=$ 0
:Proof
. If n is not a lest positive integer such that $\mathrm{n} .1=0$
Thus there exists m such that $\mathrm{n}>\mathrm{m}>0$ and $\mathrm{m} .1=$. 0
. Then, we get m.a $=\mathrm{m} .(1 . a)=(\mathrm{m} .1) \cdot a=0$
$a=0 \forall \in R$ it's mean that the charactristic of R is
, leas than n
which is a contradiction. Thus n is the lest
Positive integer such that n. $1=0$
;Conversely
, It n is not a charactristic of R then
there exists $. \mathrm{m}>0$ such that $\mathrm{m} .1=0$ But $\mathrm{n} .1=0$
$\Longrightarrow m=n$
.Thus n is the charactristic of R
:Theorem :2-13
Let $(F,+,$.$) be a field. Then the characteristic of$.F it eitler 0 or a prime number P
:Proof
Let $0 \neq \mathrm{n} \in \mathrm{F}$ be a characteristic of F , then $\mathrm{n} .1=0$
. Let $\mathrm{n}=n 1 . n 2, n 1<\mathrm{n}, \mathrm{n} 2<\mathrm{n} . \operatorname{Then}(1 . n 2)$
yields $(n 1.1)(n 2.1)=016$ But since $F, 0=1$
. is a field
Thus either $n 1.1=0$ or $n 2.1=0$
Thus either $n 1.1 \mathrm{a}=0 \Longrightarrow n 1 \cdot \mathrm{a}=0$ or $n 2 \cdot 1 \mathrm{a}=0$ $n 2 . a=0 \forall a \in R$ thus the characteristic of F is \Longrightarrow . $\leq \max (1, n 2)<$ contradiction
.Thus n is a Prime

